

Northwest Flow Snow in Western North Carolina

National Weather Service Greenville-Spartanburg Airport Greer, SC 20 January 2006

Prepared for a broadcast media seminar in Asheville, NC

What is Northwest Flow Snow?

Snowfall in WNC occurring during periods of low-level upslope (northwest) flow across the southern Appalachians

Johns Hopkins University Applied Physics Research Lab

Upslope Flow

Along the North Carolina / Tennessee border

Elevation increases of 4000 ft to 5000 ft occur over very short distances

Northwest Flow Snow

Minor Event

Moderate Event

Northwest Flow Snow

Major Event

Primary Characteristics

Forced by orography

- Often not associated with extratropical cyclone precipitation shield
 - Synoptic scale environment can be dominated by forcing promoting downward motion
 - Occasionally... troughs embedded in northwest flow enhance snowfall (e.g., 18-20 December 2003)
- Snowfall distribution quite irregular and accumulations highly variable
 - Sometimes only flurries
 - Sometimes warning criteria

Categories

Post Frontal

- "Classical" northwest flow snow in WNC
- Strong windsBlowing and Drifting
- Comma Head
 ("Wrap Around")

Cut-Off Low

 Late winter and early spring Buckner Gap (Elev. 3370 ft) - Interstate 26 Madison County (Photo: NCDOT)

Post Frontal

HPC Surface Analysis - 1200 UTC 10 February 2005

Post Frontal

HPC 500 mb Analysis - 1200 UTC 10 February 2005

TERRA MODIS 2005-02-10 1644-1657 UTC Bands 010403: Mid-Atlantic US

SSEC LIW-MADISON DIRECT BROADCAST

TERRA MODIS - 10 February 2005 - 1644 - 1657 UTC

SSEC UW-Madison

View from Purchase Knob 5086 ft MSL Haywood County Toward the Northeast 10 February 2005 2000 UTC NPS/DOI

Northwest Flow Snow Base Reflectivity

MRX (Morristown) - 1758 UTC

10 February 2005

TERRA MODIS - 11 February 2005 - 1550 - 1601 UTC

SSEC UW-Madison

View from Purchase Knob

11 February 2005 2000 UTC

NPS/DOI

500-Millibar Height Contour at 7:00 A.M. E.S.T.

500 mb 1200 UTC Saturday – 14 January 2006

Surface 1200 UTC Saturday – 14 January 2006 TERRA MODIS 2006-01-14 1632-1644 UTC Bands 010403: Mid-Atlantic US

Saturday – 14 January 2006

Sunday – 15 January 2006

Images: SSEC UW-Madison

Fundamental Forecast Considerations

- Horizontal and vertical extent of post frontal moisture
 - Flurries and snow showers west of mountains
- Temperature
- Stability
- Wind direction and wind speed
- Upwind short waves embedded in NW flow

Cloud and Precipitation Physics

- Clouds should extend to -15°C (>< 2 or 3 degrees) for most efficient generation of snowflakes (refer to Nakaya diagram)
 - Optimum production of dendritic snow crystals
 - Optimum diffusive growth rates of ice
 - Nakaya IR enhancement curve used at NWS GSP

Nakaya Diagram

Growth rates as a function of temperature for ice crystal in water-saturated cloud at 1000 mb and 500 mb. Temperatures of maximum growth rate are indicated.

⇐ Nakaya Diagram (Byers 1965)

IR Satellite Imagery (Nakaya Curve)

Light Blue..... 0.0° C Darker Blue... -10.0° C Dark Blue..... -13.0° C Purple..... -17.5° C Light Purple.... -20.0° C Light Gray.....-23.0° C

Dark Blue Highlights temperatures within +/-2°C of -15°C

¹⁵⁴⁵ UTC - 17 April 2001

Comma Head ("Wrap-Around") Event – 20 January 2001

Surface

500 mb

Storm of the Century March 1993

Cut-Off Low – 8 May 1992

Surface

500 mb

Model Guidance

GFS – NAM – RUC

Reasonably good at depicting global and synoptic scale aspects of northwest flow snow events

Devil is in the details

HesoETA LineG Rel Humidity Img(5) 17.06 12HR Tue 18:002 17-Apr-01 MesoETA LineG Wind (kts) 17:06 12HR Tue 18:002 17-Apr-01 MesoETA LineG Rel Humidity (5) 17:06 12HR Tue 18:002 17-Apr-01 MesoETA LineG Imgerature (5) 17:06 12HR Tue 18:002 17-Apr-01

Windward and Leeward Slopes During Periods of Northwest Flow

Summary

- Northwest Flow Snow... Produced or augmented by northwest, upslope flow across southern Appalachians
- Favors Tennessee border counties
- Often occurs in synoptic scale environments favoring downward motion
 - "Classical" (post-frontal)
 - Variable accumulation and areal distribution
 - Comma Head ("Wrap Around")
 - Cut-off Low
- Key ingredients
 - Considerable upwind low-level moisture
 - Low-level winds nearly perpendicular to terrain
 - Favorable cloud microphysical properties

References

Supplied upon request

http://www.its.caltech.edu/~atomic/snowcrystals/

