The Role of the Great Lakes in the 10-11 February 2005 Northwest Flow Snowfall Event in the Southern Appalachian Mountains

> Blair Holloway NOAA/National Weather Service Greer, SC

Outline

- Introduction
- Motivation
- Background Research Areas
 - Flow over mountains
 - Northwest Flow Snowfall (NWFS) Events
- Objective
- Hypotheses
- Methodology
 - Experimental design
 - Weather Research and Forecast (WRF) model
- 10-11 February 2005 Event
- Conclusions
- Future Work
- Acknowledgements

 Snowfall accompanying upslope flow and low-level Newindesing the southarn Appalachian Mountains

http://www1.ncdc.noaa.gov/pub/data/images/blizzard-newengland-20010306-n16rgb.gif

Storm Total Snowfall (inches)

http://www.erh.noaa.gov/gsp/localdat/December_18-20.htm

http://www.erh.noaa.gov/gsp/localdat/headline/25jan2001snow/index.htm

Graphic courtesy of Dr. Baker Perry

Motivation

 Significant forecast challenge for National Weather Service (NWS)

- Issues include total accumulations, spatial extent, variability

- Communication with NWS through NWFS discussion group, communication with Greenville-Spartanburg staff
- Climatological studies of NWFS events done by Perry and Konrad 2004-2006 provide excellent motive
 - Identified "Great Lakes connection" (GLC)
 - But: (i) only subsidence cases, (ii) no quantification of GLC

Background Research – Flow Over Mountains

• Quantifying interaction of air flow and mountain barrier (Froude number)

Fr = U/NH

U – velocity perpendicular to mountain range N – static stability H – mountain height

- Great Lakes influence on Fr:
 - Destabilization increase (smaller N)
 - Moistening further increases (moist N)
- Expect more NWFS for high Fr, more flow up and over mountains
- May affect distribution, amount of precipitation

Background – NWFS Events

- Nearly 50% of average annual snowfall totals attributable to NWFS events (Perry and Konrad 2004; Perry 2006)
- Of 191 NWFS events between 1975-2000, 47.1% exhibited a Great Lakes connection (GLC) (Perry and Konrad 2005; Perry et al. 2006)
- Overall, events with GLC showed increases in composite mean and maximum snowfall totals (Perry and Konrad 2005; Perry et al. 2006)
- These results suggest that the Great Lakes can enhance snowfall in NWFS events in southern Appalachians

Objective

 Quantify and evaluate the role of the Great Lakes in NWFS events for select cases via model experiments using WRF.

Hypotheses

1. The Great Lakes are a major source of moisture and instability in some NWFS events and precipitation amounts would be decreased in their absence.

2. Lake-induced instability can affect the spatial extent and amount of snowfall.

Methodology – WRF Model Domain

- 150x150 size
- 24 km grid spacing
- Centered at 36.96 °N; -81.09 °W
- 0.5 degree SST data
- North American Regional Reanalysis (NARR) data used as initial and boundary conditions

Methodology – Control Run (CTRL)

 Purpose: serve as surrogate observational dataset, and basis for comparison for experimental runs

Parameterization schemes:

- Lin et al. microphysics
- Yonsei University (YSU) PBL
- Betts-Miller-Janjic (BMJ) convective
- Rapid Update Cycle (RUC) land-surface model
- Monin-Obhukov surface layer
- RRTM longwave radiation
- Dudhia shortwave radiation

Methodology – Experimental Run 2 (NOFLX)

 Purpose: increase stability between the Great Lakes and southern Appalachians
Determine the extent to which upstream destabilization contributed to precipitation

Same setup as CTRL except:
– Surface fluxes of heat and moisture set to zero across the entire model domain

Methodology – Experimental Run 3 (LKNOFLX)

 Purpose: isolate Great Lakes, determine their contribution to moisture and instability in NWFS events

Same setup as CTRL except:
– Surface fluxes of heat and moisture set to zero over water

10-11 February 2005

500 hPa - 10-11 February 2005

12 UTC 10 February 2005

00 UTC 11 February 2005

850 hPa – 10-11 February 2005

12 UTC 10 February 2005

00 UTC 11 February 2005

Surface Analyses – 10 February 2005

00 UTC

12 UTC

Radar – 10-11 February 2005

http://mesonet.agron.iastate.edu/GIS/apps/rview/warnings.phtml

CTRL – 10-11 February 2005

CTRL Total NWFS Precipitation (in.): 09 UTC 10 February – 21 UTC 11 February

CTRL – 10-11 February 2005

Θ_e Cross-sections along plane highlighted on previous image

d. 050211/0900

c. 050210/1800

Total NWFS Precipitation (in.): 09 UTC 10 February – 21 UTC 11 February

NOFLX

CTRL

NOFLX-CTRL Precipitation Diff. (in.): 09 UTC 10 February – 21 UTC 11 February

NOFLX – 10-11 February 2005 00 UTC 11 February

 Θ_{e} Cross-section along same plane as previous

Oe Profile from Banner Elk, NC

b. 050211/0000

(CTRL-red, NOFLX-)

Ω (µbar/sec) profiles along plane in previous slide

950-875 hPa layer averaged mixing ratio (g/kg)

Total NWFS Precipitation (in.): 09 UTC 10 February – 21 UTC 11 February

LKNOFLX

CTRL

LKNOFLX-CTRL Precipitation Diff. (in.): 09 UTC 10 February – 21 UTC 11 February

Θe Profiles (CTRL-red, LKNOFLX-blue)

Erwin, TN

La Crosse, IN

09 UTC 10 February Difference field (LKNOFLX-CTRL)

21 UTC 10 February Difference field (LKNOFLX-CTRL)

2m temperature (°C) difference field (LKNOFLX-CTRL) and 10m winds (kts)

CTRL

7.0

950-875 hPa layer averaged mixing ratio (g/kg)

Percent Decrease in NWFS Precipitation in LKNOFLX

Conclusions

- Great Lakes responsible for up to 1/5 of NWFS precipitation at some locations in southern Appalachians (LKNOFLX) less than expected?
- Great Lakes provide moisture and instability during event (NOFLX, LKNOFLX)
- When stability increased between lakes and mountains, upward vertical motion decreases on windward slopes, and NWFS precipitation is decreased (NOFLX) (consistent with lowered F_r number)
- NWFS precipitation can still occur despite a lack of convective instability between lakes and mountains (NOFLX)
- Spatial extent and distribution appears to be largely determined by terrain rather than presence and magnitude of convective instability

Future Work

- Higher resolution modeling experiments
 - Cases presented here as well as others
 - Parameterized vs. explicit convection
 - Better representation of southern Appalachians
- Further work to classify NWFS events and expected effects from each class
- Observational study of NWFS events
 - Snow-to-liquid ratios within events
 - Cloud physics and snowfall production
- Operational model climatology
 - How well do current operational models handle NWFS events?
 - What are the biases with regard to precipitation

Acknowledgements

- NSF Grant ATM-0342691
- NC State M.S. Graduate committee – Dr. Lackmann, Dr. Raman, Dr. Lin
- Dr. Baker Perry
- NWS

– CSTAR NWFS group, Steve Keighton– GSP staff

References

- Chang, S. S., and R. R. Braham Jr., 1991: Observational study of a convective internal boundary layer over Lake Michigan. J. Atmos. Sci., 48, 2265–2279.
- Hjelmfelt, M. R., 1992: Orographic effects in simulated lake-effect snowstorms over Lake Michigan. *Mon. Wea. Rev.*, **120**, 373–377.
- Keyser, D. and L. W. Uccellini, 1987: Regional models: Emerging research tools for synoptic meteorologists. *Bull. Amer. Met. Soc.*, **68**, 306–320.
- Kristovich, D. A. R., N. F. Laird, and M. R., Hjelmfelt, 2003: Convective evolution across Lake Michigan during a widespread lake-effect snow event. *Mon. Wea.Rev.*, **131**, 643–655.
- Lee, L. G., 2005: Northwest Flow Snow Events. CSTAR Workshop Presentation, October 7, 2005.
- Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press.
- Mesinger, F., and Coauthors: North American Regional Reanalysis. Bull. Amer. Met. Soc., 87, 343–360.
- Niziol, T. A., W. R. Snyder, and J. S. Waldstreicher, 1995: Winder weather forecasting throughout the eastern United States. Part IV: Lake Effect Snow. *Wea. Forecasting*, **11**, 61–76.
- Perry, L.B., 2006: Synoptic Climatology of Northwest Flow Snowfall in the Southern Appalachians. Ph.D. dissertation, Dept. of Geography, University of North Carolina at Chapel Hill, 176 pp. [Available from Dept. of Geography, University of North Carolina at Chapel Hill, NC 27599.]
- Perry, L.B., and C. E. Konrad, 2004: Northwest flow snowfall in the southern Appalachians: spatial and synoptic patterns. Proceedings of the 61st Eastern Snow Conference, 179–189.
- Perry, L.B., and C. E. Konrad, 2005: The Influence of the Great Lakes on snowfall patterns in the southern Appalachians. *Proceedings of the 62nd Eastern Snow Conference*, 279–289.
- Perry, L.B., and C. E. Konrad, 2006: Relationships between NW flow snowfall and topography in the Southern Appalachians, USA. *Clim. Res.*, **32**, 35–47.
- Perry, L.B., C. E. Konrad, and T. W. Schmidlin, 2006: Antecedent upstream air trajectories associated with northwest flow snowfall in the southern Appalachian Mountains. *Wea. Forecasting*, Accepted.
- Sousounis, P. J., and J. M. Fritsch, 1994: Lake-aggregate mesoscale disturbances. Part II: A case study of the effects on regional and synoptic-scale weather systems. *Bull. Amer. Met. Soc.*, **75**, 1793–1811.
- Sousounis, P. J., and G. E. Mann, 2000: Lake-aggregate mesoscale disturbances. Part V: Impacts on lake-effect precipitation. *Mon. Wea. Rev.*, **128**, 728–745.

Questions?