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Motivation

 Significant forecast challenge for National Weather
Service (NWS)

— Issues include total accumulations, spatial extent, variability

e Communication with NWS through NWFS discussion
group, communication with Greenville-Spartanburg staff

« Climatological studies of NWFS events done by Perry
and Konrad 2004-2006 provide excellent motive
— ldentified “Great Lakes connection” (GLC)
— But: (i) only subsidence cases, (ii) no quantification of GLC




Background Research — Flow Over Mountains

* Quantifying interaction of air flow and mountain barrier (Froude
number)

Fr = U/NH

U — velocity perpendicular to mountain range
N — static stability
H — mountain height

« Great Lakes influence on Fr:
— Destabilization increase (smaller N)
— Moistening further increases (moist N)

« Expect more NWFS for high Fr, more flow up and over mountains




Background — NWFS Events

Nearly 50% of average annual snowfall totals attributable
to NWFS events (Perry and Konrad 2004; Perry 2006)

Of 191 NWFS events between 1975-2000, 47.1%
exhibited a Great Lakes connection (GLC) (Perry and
Konrad 2005; Perry et al. 20006)

Overall, events with GLC showed increases in composite
mean and maximum snowfall totals (Perry and Konrad
2005; Perry et al. 2006)

These results suggest that the Great Lakes can enhance
snowfall in NWFS events in southern Appalachians




Objective

» Quantify and evaluate the role of the
Great Lakes in NWFS events for select
cases via model experiments using
WREF.

R



Hypotheses

1. The Great Lakes are a major source of
moisture and instability in some NWFS

events and precipitation amounts would
be decreased Iin their absence.

2. Lake-induced instability can affect the
spatial extent and amount of snowfall.

P



Methodology — WRF Model Domain

150x150 size

* 24 km grid spacing

« Centered at 36.96 °N; -
81.09 °W

* 0.5 degree SST data

* North American Regional
Reanalysis (NARR) data
used as initial and
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Methodology — Control Run (CTRL)

* Purpose: serve as surrogate observational dataset, and
basis for comparison for experimental runs

« Parameterization schemes:
— Lin et al. microphysics
— Yonsei University (YSU) PBL
— Betts-Miller-danjic (BMJ) convective
— Rapid Update Cycle (RUC) land-surface model
— Monin-Obhukov surface layer
— RRTM longwave radiation
— Dudhia shortwave radiation




Methodology — Experimental Run 2
(NOFLX)

Purpose: increase stability between the
Great Lakes and southern Appalachians

— Determine the extent to which upstream
destabilization contributed to precipitation

Same setup as CTRL except:

— Surface fluxes of heat and moisture set to
zero across the entire model domain
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Methodology — Experimental Run 3
(LKNOFLX)

* Purpose: isolate Great Lakes, determine
their contribution to moisture and instability
in NWFS events

« Same setup as CTRL except:

— Surface fluxes of heat and moisture set to
Zero over water
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10-11 February 2005 Event Snowfall Totals

Graphic courtesy of Baker PerryN



500 hPa — 10-11 February 2005
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850 hPa — 10-11 February 2005
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Surface Analyses — 10 February 2005
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Radar — 10-1 1 February 2005




CTRL — 10-11 February 2005

CTRL Total NWFS Precipitation (in.): 09 UTC 10 February — 21 UTC 11 February




CTRL — 10-11 February 2005

O, Cross-sections along plane highlighted on previous image

a. 050210/0000 b. 050210/0300

wimei i (0 ELL 0D B SN N BT i et A A
T T

41.3:-86.9 S ' 41.3:-86.9

¢. 0502101800 d. 050211/0900




NOFLX — 10-11 February 2005

Total NWFS Precipitation (in.): 09 UTC 10 February — 21 UTC 11 February




NOFLX — 10-11 February 2005

NOFLX-CTRL Precipitation Diff. (in.): 09 UTC 10 February — 21 UTC 11 February




NOFLX — 10-11 February 2005
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NOFLX — 10-11 February 2005

Q (ubar/sec) profiles along plane in previous slide
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NOFLX — 10-11 February 2005
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LKNOFLX — 10-11 February 2005

Total NWFS Precipitation (in.): 09 UTC 10 February — 21 UTC 11 February

LKNOFLX




LKNOFLX — 10-11 February 2005

LKNOFLX-CTRL Precipitation Diff. (in.): 09 UTC 10 February — 21 UTC 11 February




LKNOFLX — 10-11 February 2005

e Profiles (CTRL- =, LKNOFLX- )
09 UTC 10 February

21 UTC 10 February

200 320
a. Red-ctrl. Blue-lknoflx 050210/2100

DR DD ‘,:.-3-"’?*’?

260 2B0 300 J20
i. Red-ctrl. Blue-lknoflx 0530210/70900

Erwin, TN
La Crosse, IN




LKNOFLX — 10-11 February 2005
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LKNOFLX — 10-11 February 2005

21 UTC 10 February Difference field (LKNOFLX-CTRL)
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LKNOFLX — 10-11 February 2005

2m temperature (°C) difference field (LKNOFLX-CTRL) and 10m winds (kts)
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LKNOFLX — 10-11 February 2005
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LKNOFLX — 10-11 February 2005

Percent Decrease in NWFS Precipitation in LKNOFLX




Conclusions

Great Lakes responsible for up to 1/5 of NWFS precipitation at some
locations in southern Appalachians (LKNOFLX) — less than expected?

Great Lakes provide moisture and instability during event (NOFLX,
LKNOFLX)

When stability increased between lakes and mountains, upward vertical
motion decreases on windward slopes, and NWFS precipitation is
decreased (NOFLX) (consistent with lowered F. number)

NWEFS precipitation can still occur despite a lack of convective instability
between lakes and mountains (NOFLX)

Spatial extent and distribution appears to be largely determined by terrain
rather than presence and magnitude of convective instability




Future Work

* Higher resolution modeling experiments
— Cases presented here as well as others
— Parameterized vs. explicit convection
— Better representation of southern Appalachians

* Further work to classify NWFS events and expected effects from
each class

* Observational study of NWFS events
— Snow-to-liquid ratios within events
— Cloud physics and snowfall production

* Operational model climatology
— How well do current operational models handle NWFS events?
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